360 research outputs found

    Observation of the Λb0 → χc1 (3872) pK− decay

    Get PDF
    No abstract available

    Study of the psi(2)(3823) and chi(c1)(3872) states in B+->(J/psi pi(+)pi(-))K(+)decays

    Get PDF
    The decays B+→J/ψπ+π−K+B^+\rightarrow J/\psi \pi^+ \pi^- K^+ are studied using a data set corresponding to an integrated luminosity of 9fb−1^{-1} collected with the LHCb detector in proton-proton collisions between 2011 and 2018. Precise measurements of the ratios of branching fractions with the intermediate ψ2(3823)\psi_2(3823), χc1(3872)\chi_{c1}(3872) and ψ(2S)\psi(2S) states are reported. The decay of B+→ψ2(3872)K+B^+\rightarrow \psi_2(3872)K^+ with ψ2(3823)→Jψπ+π−\psi_2(3823)\rightarrow J\psi\pi^+\pi^- is observed for the first time with a significance of 5.1 standard deviations. The mass differences between the ψ2(3823)\psi_2(3823), χc1(3872)\chi_{c1}(3872) and ψ(2S)\psi(2S) states are measured to be mχc1(3872)−mψ2(3823)=47.50±0.53±0.13 MeV/c2 ,mψ2(3823)−mψ(2S)=137.98±0.53±0.14 MeV/c2 ,mχc1(3872)−mψ(2S)=185.49±0.06±0.03 MeV/c2 , \begin{array}{rcl} m_{\chi_{c1(3872)}} - m_{\psi_2(3823)} &= & 47.50 \pm 0.53 \pm 0.13\,\mathrm{MeV/}c^2\,, \\ m_{\psi_2(3823)} - m_{\psi(2S)} &= & 137.98 \pm 0.53 \pm 0.14\,\mathrm{MeV/}c^2\,, \\ m_{\chi_{c1}(3872)} - m_{\psi(2S)} &= & 185.49 \pm 0.06 \pm 0.03\,\mathrm{MeV/}c^2\,, \end{array} resulting in the most precise determination of the χc1(3782)\chi_{c1}(3782) mass. The width of the ψ2(3823)\psi_2(3823) state is found to be below 5.2MeV at 90\% confidence level. The Breit-Wigner width of the χc1(3872)\chi_{c1}(3872) state is measured to be Γχc1(3872)BW=0.96−0.18+0.19±0.21MeV, \Gamma^{\mathrm{BW}}_{\chi_{c1}(3872)} = 0.96^{+0.19}_{-0.18}\pm0.21 \mathrm{MeV}, which is inconsistent with zero by 5.5 standard deviations.Comment: 26 pages, 3 figures. All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2020-009.html (LHCb public pages

    Precision measurement of the Ξcc++Ξcc++ {\varXi}_{cc}^{++} mass

    Get PDF
    A measurement of the Ξ++cc mass is performed using data collected by the LHCb experiment between 2016 and 2018 in pp collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.6 fb−1. The Ξ++cc candidates are reconstructed via the decay modes Ξ++cc→Λ+cK−π+π+ and Ξ++cc→Ξ+cπ+. The result, 3621.55 ± 0.23 (stat) ± 0.30 (syst) MeV/c2, is the most precise measurement of the Ξ++cc mass to date

    Search for CP Violation in D-s(+) -> K-S(0)pi(+), D+ -> (KSK+)-K-0, and D+ -> phi pi(+) Decays

    Get PDF
    A search for charge-parity (CPCP) violation in Cabibbo-suppressed Ds+→KS0π+D_s^+\to K_S^0 \pi^+, D+→KS0K+D^+\to K_S^0 K^+ and D+→ϕπ+D^+\to \phi \pi^+ decays is reported using proton-proton collision data, corresponding to an integrated luminosity of 3.8 fb−1^{-1}, collected at a center-of-mass energy of 13 TeV with the LHCb detector. High-yield samples of kinematically and topologically similar Cabibbo-favored D(s)+D_{(s)}^+ decays are analyzed to subtract nuisance asymmetries due to production and detection effects, including those induced by CPCP violation in the neutral kaon system. The results are \begin{align*} \mathcal{A}_{CP}(D_s^+\to K_S^0 \pi^+) &=\left(\phantom{-}1.3\phantom{0}\pm1.9\phantom{0}\pm0.5\phantom{0}\right)\times10^{-3},\\ \mathcal{A}_{CP}(D^+\to K_S^0 K^+) &=\left(-0.09\pm0.65\pm0.48\right)\times10^{-3},\\ \mathcal{A}_{CP}(D^+\to \phi \pi^+) &=\left(\phantom{-}0.05\pm0.42\pm0.29\right)\times10^{-3}, \end{align*} where the first uncertainties are statistical and the second systematic. They are the most precise measurements of these quantities to date, and are consistent with CPCP symmetry.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2019-002.htm

    Search for the lepton-flavor-violating decays Bs0→τ±μ∓ and B0→τ±μ∓

    Get PDF
    Results are reported from a search for the rare decays B 0 s → τ ± μ ∓ and B 0 → τ ± μ ∓ , where the τ lepton is reconstructed in the channel τ − → π − π + π − ν τ . These processes are effectively forbidden in the standard model, but they can potentially occur at detectable rates in models of new physics that can induce lepton-flavor-violating decays. The search is based on a data sample corresponding to 3     fb − 1 of proton-proton collisions recorded by the LHCb experiment in 2011 and 2012. The event yields observed in the signal regions for both processes are consistent with the expected standard model backgrounds. Because of the limited mass resolution arising from the undetected τ neutrino, the B 0 s and B 0 signal regions are highly overlapping. Assuming no contribution from B 0 → τ ± μ ∓ , the upper limit B ( B 0 s → τ ± μ ∓ ) < 4.2 × 10 − 5 is obtained at 95% confidence level. If no contribution from B 0 s → τ ± μ ∓ is assumed, a limit of B ( B 0 → τ ± μ ∓ ) < 1.4 × 10 − 5 is obtained at 95% confidence level. These results represent the first limit on B ( B 0 s → τ ± μ ∓ ) and the most stringent limit on B ( B 0 → τ ± μ ∓ )
    • …
    corecore